Code for Fun

~>>

Coding for a better community MIRROR_X": MIRROR_X": MIRROR_Y"= False False CPCTATION = MIRROR_Y"= MIRROR_Y"= MIRROR_Y"= MIRROR_Y"= MIRROR_Z"= Pror_mod.use_x = False MIRROR_Z"= MIRROR_Y"=

election at the end -add _ob.select= 1 er_ob.select=1 ntext.scene.objects.active ("Selected" + str(modifie) irror_ob.select = 0 bpy.context.selected_ob ata.objects[one.name].selected_ob)

operator classes -----

sypes.Operator): X mirror to the s lect.mirror.mirror

- Increase exposure to computational thinking, coding and digital making
- Leverage on innovation and values to make a difference towards improving our community
- Generate interest for possible computing elective at upper secondary

Synergising the Learning

Infuse FIDS and Computational Thinking to <u>Make a Difference</u> COMPUTATIONAL THINKING

M5GO v2.6 IoT Maker Kit and Sensors

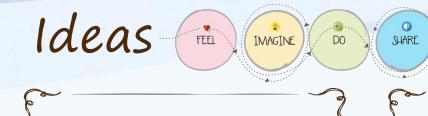
Outline of Activity

- 10 h spread over 3 days
- Learn code through your PLD, infuse Design Thinking and Computational thinking
- leverage on block programming and sensors for capstone project to create a prototype
- Reflection for reinforcement of Learning
- Extension and Learning infusion to VIA in Sec 2

Schedule

- Bring fully charged PLD
- Pair work
- 30 min recess

Description	23 Oct	24 Oct	26 Oct
	Mon	Tue	Thu
Activity	0800 -	0800 -	0830 -
	0930	1100	0930
Break	Recess	Recess	Recess
	0930 - 1000	1100 - 1130	0930 - 1000
Activity	1000 -	1130 -	1000 -
	1230	1230	1130


Other Administration Matters

- Report punctually to your own classrooms after recess.
- Be properly attired and be respectful to the trainers.
- Bring writing materials (i.e. Pen)

Possible Infusion into Sec 2 CCA-VIA

- Infuse Design Thinking (FIDS) and Computational Thinking
- Make the difference to the community
- More details will be shared in Sec 2

Smart Farm and Watering System

Smart and Remote IoT Pet Feeder

Smart Hygiene Monitoring System

Annex A

Workshop Outline

Hours	Lesson Objectives		
1	Computational thinking and introduction to microcontroller and programming platform.		
2	Learning and controlling outputs (LEDs and Buzzers) with Buttons		
3	Using and Coding Inputs/Sensors (PIR and Light Sensors)		
4	Using sensors (ultrasonic sensor) to control actuators (servo motor)		
5	Collection of data, data analysis using environment sensor and to control an output (ie. LED, Buzzer or Servo)		
6	Using IoT and sensors to collect, post and analyse data on the cloud		
7	Learn what is design thinking, how to empathise, define problem statement before ideating on solution, prototyping and reiteration using sensors/actuators		
8-10	Capstone Project – Students will work in groups to create a prototype, using what they have learnt, to solve problem statement posed		